Reduced Genus-two Gromov-witten Invariants for P

نویسنده

  • Wei Wang
چکیده

In this paper, we construct the reduced genus-two Gromov-Witten invariants of degree d ≥ 3 for the standard projective space Pn of dimension n ≤ 7. This invariant counts the number of simple genus-two holomorphic curves in Pn of degree d that satisfy appropriate number of constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relations Among Universal Equations For Gromov-Witten Invariants

It is well known that relations in the tautological ring of moduli spaces of pointed stable curves give partial differential equations for Gromov-Witten invariants of compact symplectic manifolds. These equations do not depend on the target symplectic manifolds and therefore are called universal equations for Gromov-Witten invariants. In the case that the quantum cohomology of the symplectic ma...

متن کامل

Reduced genus-two Gromov-Witten Invariants for complex manifolds

In this article, we construct the reduced genus-two Gromov-Witten invariants for certain almost Kähler manifold (X,ω, J) such that J is integrable and satisfies some regularity conditions. In particular, the standard projective space (Pn, ω0, J0) of dimension n ≤ 7 satisfies these conditions. This invariant counts the number of simple genus-two J-holomorphic curves that satisfy appropriate numb...

متن کامل

Standard vs. Reduced Genus-One Gromov-Witten Invariants

We give an explicit formula for the difference between the standard and reduced genus-one Gromov-Witten invariants. Combined with previous work on geometric properties of the latter, this paper makes it possible to compute the standard genus-one GW-invariants of complete intersections. In particular, we obtain a closed formula for the genus-one GW-invariants of a Calabi-Yau projective hypersurf...

متن کامل

Higher Genus Gromov–witten Invariants as Genus Zero Invariants of Symmetric Products

I prove a formula expressing the descendent genus g Gromov-Witten invariants of a projective variety X in terms of genus 0 invariants of its symmetric product stack S(X). When X is a point, the latter are structure constants of the symmetric group, and we obtain a new way of calculating the Gromov-Witten invariants of a point.

متن کامل

Elliptic Gromov-Witten Invariants And Virasoro Conjecture

The Virasoro conjecture predicts that the generating function of Gromov-Witten invariants is annihilated by infinitely many differential operators which form a half branch of the Virasoro algebra. This conjecture was proposed by Eguchi, Hori and Xiong [EHX2] and also by S. Katz [Ka] (see also [EJX]). It provides a powerful tool in the computation of Gromov-Witten invariants. In [LT], the author...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008